
tive modulus; a, B, Y, constants characterizing the meniscus; ~, strain rate; ~* = o/~; 
c, m, constants; T, temperature; t*, time of passage of a fixed section from z = R to the 
drum; LI and Lu, lengths of the stream being stretched and the falling stream; Ffr, fric- 
tion; q, flow rate. 
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THE SPREADING OF A NON-NEWTONIAN LIQUID OVER A HORIZONTAL 

PLANE WITH INTENSIVE HEAT-TRANSFER AND MASS-TRANSFER 

PROCESSES ON THE SURFACE OF THE LAYER 

B. M. Khusid UDC 532.135 

We investigate the flow of a layer of highly viscous non-Newtonian liquid over a 
horizontal plane, accompanied by intensive heat-transfer and mass-transfer pro- 
cesses. 

We consider the behavior of a layer of viscoelastic liquid with a free surface on a 
solid horizontal plane. The coordinate system is so chosen that the axes OX and OY lie in 
this plane and the axis OZ is directed upward. In what follows, we shall consider the be- 
havior of large liquid masses, and therefore we shall disregard capillary forces. For a 
highly viscous liquid the hydrodynamic problem is simplified. In the first place, the Rey- 
nolds numbers are small and the inertial terms may be neglected in the equations of motion. 
In the second place, the characteristic time scale of the flow is much longer than the re- 
laxation time of the liquid (small Debora numbers), and the rheological equations of a non- 
linearly viscoelastic liquid reduce to the rheological differential equation [i, 2] that is 
valid for slow flows: 

T = ~]AI -~ lJA1 ~- vA2. 

Here T is the excess-stress tensor; A1 DC~ (~) I ; A2 = 
Dz J~=t 

D2Ct (~c) 
DTz 

(i) 

l~=t Rivlin--Eriksen tensors 

[i, 2]; Ct(T), Cauchy deformation tensor [i, 2]; coefficients n, ~, ~ depend on the second 
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invariant tensor of the deformation rates; and tensor Ai coincides with double the deforma- 
tion-rate tensor [i, 2]. However, even after these simplifications the problem of the flow 
of a liquid with a free surface remains highly complex, even for a numerical solution (see 
the survey [3]). In the case when the characteristic scale of the flow L is considerably 
larger than the thickness h of the layer, we can use a stronger simplification of the prob- 
lem -- we can disregard the variation of the flow characteristics along the layer in compari- 
son with their variation across the layer. Such an approximation is widely used in the 
theories of films and the lubricant use of a non-Newtonian liquid (see, e.g., [4, 5]). In 
[6, 7] a similar approach was used for calculating the spreading of a Newtonian liquid mass 
over a horizontal plane under isothermal conditions, In many cases the flow of the liquid 
is accompanied by intensive heat-transfer and mass-transfer processes: evaporation of a 
volatile solvent or chemical reactions on the surface of the layer, heating of the liquid 
from above or below, etc. Changes in the composition and temperature of the liquid cause 
a change in its effective viscosity. Therefore, the equations of heat transfer and mass 
transfer must be added to the equations of motion. 

Starting from the continuity equations, we have:~U, vu~U, ~hU/L, h~L , where U 
is the scale of the spreading rate. When X << L/U, where % is the maximum relaxation time 
in the spectrum, the trajectories of the motion of the liquid particles for the time interval 
L--T~, are determined by the relations: x~ =xt--Vx(X t, gt, zt, t)~--~), z~=z t, y~=gt--vy 
(xt, gt, zt,t)(t-T) . If for such motion we calculate the deformation tensor C t (T) and then 
the Rivlin--Eriksen tensors, and take account of the fact that ~N%, v~1%, we obtain an 
estimate for the components of the excess stresses in (i). After this, we can estimate the 
various terms of the equations of motion. The relations of the inertial forces to the vis- 
cous forces is of the order of pUh2/qL, where O is the density of the liquid. The above 
estimates show that when 

,IL ' ~ - '  L ~tL " (2) 

the equations of motion of the liquid layer and the equations of heat and mass transfer in 
it are simplified (P is the pressure): 

O T ~ _  OP OTy~ OP OP = - - 9 g ,  (3) 
Oz Ox Oz cJq Oz 

[ O0 80 80 00, 5 ( d,O 

v ac a ( (5) __Oc + + + . . . .  D 

at ~ ax y @ v~ Oz Oz k -~-z ] 

Here 0 is the temperature; c, concentration; rio = Txz &'---!-x @Tuz 0v---2-y dissipation functions; 
" Oz Oz " 

A, D, thermal conductivity and the diffusion coefficient; and Cp, specific heat capacity. 
Equations (3)-(5) are analogous to the equations used in the theory of films [4] and the 
theory of lubricant use [5] of nonlinearly viscous liquids. The above estimates show that 
if the condition (2) is satisfied, the elastic properties do not affect the motion of the 
liquid layer. We need to take into account only the variation of the shear viscosity as a 
function of the shear rate. To the equations (3) we should add the incompressibility con- 

dition 

Ovx _}_ Ovy +. Ovz -- O, (6) 
Ox @ Oz 

theboundary conditions on the free surface, which for (2) can be written in the form 

T=l~=h = Ty~l~=h -- 0, Pl~=h = Po, (7) 

Otz Oh Oh 
0--7- + v~1~=~ - g f  + v~l~=~-5)-/j" v~ ~='~ = 0, (8) 
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and the boundary conditions on the horizontal plane: 

v l;=0 = v l =0 = 0 ,  v l =0 = - -  V (x ,  0. ( 9 )  

Here h is the height of the free surface; V=~Vz6(x--&)6(J--gi), flow rate through the 
i 

i-th opening; 6(), delta function; x i, Yi' coordinates of the opening; and Po, pressure 
above the liquid. Determining v z from (3), (9) and substituting this formula into (8), we 
obtain, after some simple calculations analogous to those given in [4], the equation for 

the height of the free surface: 

Oh oQ~ 4- oQ,j + o-i- + v :o ,  (lO) 

h Ov~ ~ 8vy 
w h e r e  Q~-= i ( h - - z )  dz, Qy = J' (h - - z )  de a r e  t h e  l i q u i d  f l o w s  a l o n g  t h e  a x e s  OX and OY. 

de o Oz 
The d i s t r i b u t i o n  o f  t h e  p r e s s u r e  and t h e  s h e a r i n g  s t r e s s e s  i n  t h e  l a y e r  c a n  be  f o u n d  f r o m  
Eqs. (3), (7): 

P = Po 4- 9g (h -- z), T =  = pg (z -- h) 0!z , Tu ~ := ,og (z -- h) Oh 
" dx Oh' 

(lZ) 

For many liquids the variation of the shear viscosity as a function of shear rate, tem- 
perature, and composition is determined by using the reduced quantities [8]: 

= ~0a(0, C) f[~0a(O , c) S1/2], S =  2 t r D  2, (12) 

where D is the deformation-rate tensor; a(e, c), shear factor taking account of the varia- 
tion in temperature and composition; a = 1 at the reduced temperature and composition; no, 
~o, initial non-Newtonian viscosity and the relaxation time at the reduced temperature and 
composition. From formula (12) it follows that for the flow under consideration 

where ~2=I/f()~oaS I/2), and the quantity %oaS a/a is found from the expression 

~o/ko 

The relations (13) and (ii) enable us to calculate the flows Qx and Qy: 

where 

Qs - 9gh a ~j Oh, ?gh a 8tz 
~to ~ QY-- ~]o /J 09' , (14)  

,- \ Ox j 4 - \ @  ! h 

Thus, the variation of the height of the liquid layer as a function of time is described by 
the nonlinear parabolic equation 

ot e, - v ( ,ogh3  o (15) 

The runoff velocity in (15) usually depends only on the pressure on the plane. The 
relation I/i = V~[P0 4- pgh(&, F~, t)] is determined by the hydraulic characteristics of the run- 
off structure. When the dimension of the region near the free surface, where the initial 
non-Newtonian viscosity of the liquid is reached, is so small that for all temperatures, 
compositions, and shear rates we may use a power law for the viscosity f=@oaS1/2) ''-~, then 
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1 - - n  1 [ 

/Oh " , 2  '_ - -  

6 a (0, c) 

Let us analyze in more detail the equations of heat and mass transfer (4), (5) for the 
flow under consideration. The dissipative heat generation heats the liquid in time L/U by 
an amount A0 d z gh/cp, which usually does not exceed several tens of degrees. Therefore 
the dissipation of energy may be disregarded in (4). The boundary conditions for Eqs. (�88 
(5) when z = h are determined by the physicochemical processes taking place on the free 
surface. The kinetic equations for these processes:relate the temperature 01z= h and the 
composition C[z= h of the liquid to the heat flux jo and the mass flux Jc removed from the 
layer. If the inequalities (2) are satisfied, then 

- -  jr = D ~ z  + c at }z=~,' - - ~  ' '~ at }~-_h " 
(17) 

The boundary conditions for a horizontal surfane with z = 0 can be set up analogously. 
The nature of the influence exerted by the heat and mass transfer on the motion of the li- 
quid is determined by the relation between the spreading time L/U and the times of the ther- 
mal process (ha/K, where K = A/pCp is the thermal diffusivity) and the diffusion process 
(h2/D). The same relations characterize the ratio of the molecular and convective transfers 
described in Eqs. (4), (5). When the spreading time is much smaller than the characteristic 
times of the thermal and diffusion processes 

h 2 L h 2 L 
.>7  , - - > > . .  , (18) 

K U D U 

the effect of the heat and mass transfer: on the surfaces ~ of the layer is propagated only to 
a slight depth im the liquid, much less than the thickness of the liquid layer. When we 
calculate the distribution of temperature and concentration near the free surface, in (4), 
(5) we may set: v~Vx]~=h, v~vy[z=h, vt~v~[~=h. Near the free surface we shall seek the solu- 
tion of Eqs. (4), (5) in the form: 0=0(m t)$ c=e(o, t) , where o = h-- z. Substituting these 
expressions into (4), (5) and taking account of (8), we find: 

a o a (A a~o ) a c a (D Oc ' (19) 
9c~ at oo ' at o~ 

In the interior of the liquid volume, if the inequalities (18) are satisfied, we may 
disregard molecular transfe~ in Eqs. (4), (5). Thus, within the liquid layer the distribu- 
tion of temperature and concentration is described by the equations 

80: . . . .  80 80 80 

ac ! v~ Oc q_ Oc ac 
at Ox vu ~ y  - -v~  Oz = O. 

(20) 

If at the initial instant of time the entire liquid had a uniform temperature and composition: 
0[t=o = 0i, elt=o = ci, then, as can be seen from (20), when the liquid spreads, the temper- 
ature and composition do not change within the layer: 0 = 0i, c = c i. Near the solid sur- 
face the following relations may be used for the field of velocities: Vx ~ y~z, vu ~ yuz, v z 

0x a-~-r 2 ) 2' where Yx, Yy are the values of the velocity gradients on the horizontal 

surface. During the spreading time, changes in temperature and concentration take place in 
regions of thickness AoNV-~/U, A~ VDL/U . If the conditions of (18) are satisfied, then 
UA~/hLK~I, UA~/hLD~I and the contribution made by the convective terms to Eqs. (4), (5) near 
the solid surface is insignificant. Therefore, near the solid surface the temperature and 
concentration distributions are described by the equations 
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dO 0 (A O0 ~ Oc __ d "D c?c 
~ Ot Oz -&z ) '  Ot c~7 (, " Oz i (21) 

For a uniform distribution of temperature and concentration at the initial instant of 
time, we must set up for Eqs. (19), (21) the following initial and boundary conditions, re- 
spectively: 

Oft:0 =:Oi, Ob~- -~Oi ;  Clt=0 = : q ,  C]o+| 
(22)  

O]t=0 = Oi, O]z~| -+Oi; c[t=0 -- c i, c [ ~  - + c  i. (23) 

The b o u n d a r y  c o n d i t i o n s  when ~ = 0 f o r  (19)  and z = 0 f o r  (21)  a r e  g i v e n  on t h e  f r e e  and 
s o l i d  s u r f a c e s .  Our a n a l y s i s  shows t h a t  when t h e  i n e q u a l i t i e s  (18)  a r e  s a t i s f i e d  and t h e  
i n i t i a l  d i s t r i b u t i o n s  o f  t e m p e r a t u r e  and c o n c e n t r a t i o n  a r e  u n i f o r m  t h r o u g h o u t  t h e  l i q u i d ,  
t h e  i n t e g r a l  e x p r e s s i o n  f o r  t h e  q u a n t i t y  B can  be  b r o k e n  up i n t o  t h r e e  p a r t s :  

1 

0 

k h q~ - - - - V  [ 9gh / -  Oh) 2_t_( O h / 2 i i  [ 1 1 ] 
[ ~l./'~v o \ @ / ~ _ a[O(z, t), c(z, t)] -aT i dz@ 

0 

- - - - -  o 2 da, a. i = a(O i, c i ) ,  
+ h 3 a [0 (~r, t), c (or, t)] a i 

corresponding to the internal volume of the liquid and the thin layers near the solid and 
free surfaces. In an analogous manner, we can subdivide into three parts the integral (16) 
for the power-law model: 

( 1 - -  ~)l+Yd~ ~ + --  - -  et+l/~( ' ]do .  
a (o, c) (2n + 1) q T a (o, c) ai ] dz + h,_,T~/~ \ a (0, c) a i J 

0 0 0 

The resulting formulas for B show the radically different ways in which the motion of the 
liquid layer is affected by the heat-exchange and mass-exchange processes on the solid sur- 
face and the free surface. When the spreading time is much longer than the characteristic 
times of the thermal and diffusion processes: 

h 2 L h 2 L 
<< - - ,  << - - ,  (24) 

K u O U 

which is possible in sufficiently thin layers of liquid, we can disregard the convective 
terms in Eqs. (4), (5). In this case 

OcP Ot Oz Ot c)z , (25)  

and, in view of the slow variation of the level of liquid in comparison with the rate of the 
processes of heat and mass exchange indicated in (24), when we calculate the concentration 
and temperature, the variation of h as a function of time in (25) may be disregarded. In 

(i) the quasistationary approximation 0~0 " z , t , c ~ c , I . Therefore, in the integral 

for B we have a = a[0(~, 0, c(~, t)]. In particular, for the power-law model the integral in 
(16) is independent of h: 

i 1 

1 ~' (1 -- ~) 1+7  d~ 
%~) J a[O(~, O ,c (~ ,  l)] 

0 
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In the above-described limiting cases of a thermally thick layer (18) and a thermally 
thin layer (24), the heat-conduction equation (4) and the diffusion equation (5) can be 
solved analytically. As a result, the effect of the heat-exchange and mass-exchange processes 
on the motion of the liquid is determined only by the nature of the variation of the coef- 
ficient B in (15) as a function of h and IVhl. Under these conditions, the flow of the 
liquid layer is described by one quasilinear parabolic equation (15). Equations of this 
type occur in problems concerning the propagation of heat in media with thermal conductivities 
and a volumetric heat source which depend on temperature in a nonlinear manner, and also in 
problems concerning the filtration of nonlinearly viscous liquids. Thermal problems have 
been analyzed in detail in many studies carried out under the guidance of academician A. A. 
Samarskii at the M. V. Keldysh Applied Mechanics Institute of the Academy of Sciences of the 
USSR (see the surveys 19, i0]). Filtration problems have been described in [ii, 12]. For 
a power-function rheological law (16), Eq. (15) with no sinks for the axially symmetric case 
and the plane case has a self-similar analytic solution, found in [13, 14]. It describes 
the spread of a liquid mass over a plane for sufficiently large values of time, when the 
motion of the liquid is independent of the initial shape of the layer. For the axially sym- 
metric case this solution satisfies the integral condition that the liquid volume v remains 
constant, and for the plane case it satisfies the condition that the cross-sectional area 
s remains constant: 

i h2~trdr=v, i h d x = s "  
0 0 

Using these self-similar solutions, we can illustrate the effect of the processes of 
heat and mass exchange on the way in which the liquid spreads by using three examples: a 
thermally thick layer of cold liquid heated either from above or from below, when the fluid- 
ity of the liquid may be neglected, i/a=; ~ 0, and also a thermally thin layer, when the ef- 
fect of the heat and mass exchange is ~escribed by one characteristic ae(t ). In the first 
and second cases the calculation of the temperature and concentration fields reduces to the 
traditional problems of heat and mass transfer, (19) or (21), for a semiinfinite layer with 
boundary conditions in the interior given by (22). The literature contains many studies on 
the calculation of these fields for the most diverse physicochemical phenomena on the sur- 
face: evaporation, combustion, dissolution, radiant and convective heating, etc, The for- 
mulas obtained in these studies for the distributions of temperature and concentration 
should be substituted into the expression for B. Disregarding the fluidity of the cold li- 
quid and assuming that the distributions of temperature and concentration are independent 
of h, we find for (16) in the cases of heating from above and from below, respectively: 

h a ~ , I l ( t )= a(O, c) a i 
0 

1 

~--  h '-'ZI/~ Or ] , 12(0= dz. 
a (0, c) a i 

o 

In particular, when boundary conditions of the first kind can be given for the tempera- 
ture and concentration on the free and solid surfaces, their distribution is described by 
simple known relations (0s, c s are the values on the surface; ~ is the distance from the 
surface) : 

0 =- Oi -}- (Os - -  Oi) Erfc ( 8 ) 8 1 2 1 / f ~  ' c = c  i + ( c  s - c i ) E r f c  - -  " 2 d-b~ 

In this case: 

i ~ -  I ~ I 

-, - -  p �9 dp, 
ael ael a (p) ai 

o 
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I.,.(t)=(Kt) ~/2 1 , _ _ . 1  -- i 
a e2 ae2 'o 

a (; )  = a [ o ( ; ) ,  c 

1 i !dp ,  
a(p) ai / 

6 
} P ~ _ _  . 

V Kt 

For a thermally thin layer: 

B __ 

] 

I ,'" 9g Oh i) " 
' i -7~)g  Or 

h ~ ~ ae( t )  

As the formulas for the temperature and concentration distributions in the liquid re- 
quired for calculating ae(t), we can use the results of many published calculations of heat 
and mass transfer in thin layers on a solid surface. In the simplest case of boundary con- 
ditions of the first kind, on the free and solid surfaces in the quasistationary approxima- 
tion (see (24)) we have: 

( T) z o~o , (0  1 -  z + o ~ ( 0 T  , e ~ q ( t ) ( 1 - - + ) - < c ~ ( O  z 
h 

where the subscripts 1 and 2 denote quantities on the free and solid surfaces. The spread- 
ing of the liquid under isothermal conditions is described by the formulas for a thermally 
thin layer when a e = i. 

For the cases considered, the axially symmetrically self-similar solution of Eq~ (15) 
without sinks is written in the form 

2 " ~ l 

Here H = ( v / 2 ~ )  ~ 'a, ~ , 2 - 1  ~]0~0 is the consistency of the liquid, and the function f(~) is determined 
from the equations 

d~ d~ s i g n \  d{ / /q - -  m d~ (~z]'), bi ~ f d ~ =  1. ( 2 6 )  

For a thermally thick layer heated from above and from below, respectively, 

3 { I~ q) dt 
q = 0 ,  m -  n 1, T== ,! H 2 ~ l / a  , 

0 

q 1 + 1 5 t L( i )dt  
- - ,  m 1 + - - ,  T -  ! " 

n n 8 H 

1 5 ~ dt 
F o r  a t h e r m a l l y  t h i n  l a y e r :  q = 2 @ - - ,  m = 3 ~ - - - ,  ~ =  t ~ n tz ~ ae(t) ' In the case of heating of 

a thermally thick layer from above~ the differential equation (26) has a solution satisfying 
the integral condition of conservation only for n < 3. This solution can be written as 
follows [B( ) is the beta function]: 

1 

(7-iiig +-  t j , 
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Fig. 1. Spread of a liquid heated from above (a) and from below (b) 
in a thermally thick layer and of a liquid in a thermally thin layer 
(c) for various values of n: a) 0 (i); 0.i (2); i.i (3); 2.2 (4); 
b) 0 (i); i (2); 3 (3); 50 (4); c) 0 (i); i (2); 20 (3). 

1 

~.-, n n +  1 (n+ 1)(n-- 1) ) 
~0 ~ 

n--1 n +  1 

[[n= iI = - -  

f i n <  1]= 

1 exp (-- ~z/4), 
2 

1 

(1--(1 n)(~+l( 3-- ~+1)1) ~ .]l-~ 
+ n ) \  n 

1 

~-n =: 'Z , n + 1 

1 - - n  B . n ~ - I  ' - -  
-n 

i m tZ 

For a thermally thick layer heated from below, for all values of n: 

[ 2+in ]i12 
( n + l )  1 +  5 n , 

n , 

~o 2 (n+ l )  lq- 5 ~ 1/2 +1 
n B{  2 3 

- -  i 

n + l  2 

For a thermally thin layer, for all values of n: 

f =  

1 

(n-~ 1) 3 +  5 n 
n [ 1I2 

~0  n @ 2  ~ �9 /2 

n + 2  
n + l  

2 n + 3  
B - - ,  

n + l  n + 2  

Figure i shows the graphs of the function f for various values of n. When n = 0 for a ther- 
1 3 h rhea from above we have f 6 ! mally tick laye ted , = -- ~; when it is heated from below, 

and also in the case of a thermally thin layer, we have/=[2 (~0 ~)]~/2, ~0-- 152/s/2 " As n § =, 
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for a thermally thick layer heated from below we have f = 2 when ~I, ~ = i, and for a 
thermally thin layer we have f = 61/3/3 when $~6 Jj3 ~=6 ~/3 . As n § 3 for a thermally 
thick layer heated from above we have f § 0 when ~ > 0 and f § ~ when ~ = 0. This shows 
that we cannot use the approximation of a thermally thick layer in the case of heating from 
above for n~3. In this case the heating of the layer takes place more rapidly than the 
spreading. 

The above results for the axially symmetric case can easily be carried over to the case 
of flow in one direction, which takes place when a long strip spreads over a surface. For 
isothermal spreading of a Newtonian liquid the formulas we have obtained coincide with the 
results of [6, 7]. 
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